Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205598

RESUMO

Nanowires (NW) have been extensively studied for Shewanella spp. and Geobacter spp. and are mostly produced by Type IV pili or multiheme c-type cytochrome. Electron transfer via NW is the most studied mechanism in microbially induced corrosion, with recent interest in application in bioelectronics and biosensor. In this study, a machine learning (ML) based tool was developed to classify NW proteins. A manually curated 999 protein collection was developed as an NW protein dataset. Gene ontology analysis of the dataset revealed microbial NW is part of membranal proteins with metal ion binding motifs and plays a central role in electron transfer activity. Random Forest (RF), support vector machine (SVM), and extreme gradient boost (XGBoost) models were implemented in the prediction model and were observed to identify target proteins based on functional, structural, and physicochemical properties with 89.33%, 95.6%, and 99.99% accuracy. Dipetide amino acid composition, transition, and distribution protein features of NW are key important features aiding in the model's high performance.

2.
Front Microbiol ; 13: 1008536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386676

RESUMO

Sensing surface topography, an upsurge of signaling biomolecules, and upholding cellular homeostasis are the rate-limiting spatio-temporal events in microbial attachment and biofilm formation. Initially, a set of highly specialized proteins, viz. conditioning protein, directs the irreversible attachment of the microbes. Later signaling molecules, viz. autoinducer, take over the cellular communication phenomenon, resulting in a mature microbial biofilm. The mandatory release of conditioning proteins and autoinducers corroborated the existence of two independent mechanisms operating sequentially for biofilm development. However, both these mechanisms are significantly affected by the availability of the cofactor, e.g., Copper (Cu). Generally, the Cu concentration beyond threshold levels is detrimental to the anaerobes except for a few species of sulfate-reducing bacteria (SRB). Remarkably SRB has developed intricate ways to resist and thrive in the presence of Cu by activating numerous genes responsible for modifying the presence of more toxic Cu(I) to Cu(II) within the periplasm, followed by their export through the outer membrane. Therefore, the determinants of Cu toxicity, sequestration, and transportation are reconnoitered for their contribution towards microbial adaptations and biofilm formation. The mechanistic details revealing Cu as a quorum quencher (QQ) are provided in addition to the three pathways involved in the dissolution of cellular communications. This review articulates the Machine Learning based data curing and data processing for designing novel anti-biofilm peptides and for an in-depth understanding of QQ mechanisms. A pioneering data set has been mined and presented on the functional properties of the QQ homolog in Oleidesulfovibrio alaskensis G20 and residues regulating the multicopper oxidase properties in SRB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...